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The Gratz-Nusselt problem solved by the method of the thermal boundary layer has been extended 
to the case of heat transfer in a liquid with temperature-dependent viscosity. A solution has been 
found for nonisoviscous flow in a pipe. Appropriateness of the approximate procedure has been 
verified by confronting it with existing numerical solution. The method has been further applied 
to the case of a flat duct with heat transfer across one of its walls. The results have been correlated 
by the relation of the Sieder-Tate type NUnoniso = NUiso(IJM/lJw)a. The values of the coefficient ex 

have been tabulated for different situations. 

Heat transfer by forced convection during laminar flow is interesting from the 
practical point of view mainly in liquids with higher viscosity coefficients where 
turbulence cannot be produced economically and where natural convection is usually 
excluded. High viscosity is encountered frequently in substances which do not form 
any crystalline solid phase - e.g. in melts and concentrated solutions of polymers, 
oils, tars, glasses etc. Simultaneously, a pronounced dependence of viscosity on tem
perature is characteristic for such substances. 

Dependence of the Viscosity on the Temperature 

This dependence may be usually correlated by the relation 

1J = 1Jo exp [ -AT] . (1) 

For non-Newtonian liquids characterized by the viscosity function in the form 

1J = 1J[T, T] (2) 
it is useful to express A as 

(3) 

Part III: This Journal 37, 2898 (1972). 
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Parameter A is usually greater than 0·01 deg- l
, in highlY viscous liquids it assumes 

normally values of 0·1 deg -1 and we must not be surprised by values greater by sever
al orders. Low values of A (sometimes even below 0·01 deg- l ) are found only ex
ceptionally with highly consistent liquids, predominantly, however, with concentrated 
suspensions. 

In contrast to other correlations of the temperature dependence of viscosity, 
relation (1) brings only one new dimensionless criterion into the problem of simultane
ous heat and momentum transfer 

t/t == A .I1T, (4) 

where I1Tis a characteristic quantity with the dimension of temperature. If we choose 
for I1T the maximum temperature difference Tw - To in the system, the criterion t/t 
describes the extent to which the velocity profile is affected by changes in the tem
perature. At It/tl < 0'1, i .e. where dependence (1) could be linearized, viscosity 
changes exhibit no appreciable effects. Consequently, the contribution of works 
using the linearized relation (1) is too limited. At values of 1 t/t 1 > O' 5 (e.g. with melts 
of polymers or viscous oils even at temperature differences of 10 deg), nonisoviscous 
conditions (so-called nonisothermal flow) must be taken into account. 

Equations for Nonisor:iscous Flow 

The viscosity coefficients and consequently the velocity profiles change under the 
influence of different temperatures in different places inside the pipe. If we limit 
ourselves to exchangers of usual lengths X ~ It/tl R . Pe- l12, an approximation 
may be accepted for their most significant part, namely that the pressure is a function 
of x only and that the velocity profile at a given x is obtained by solving the dif
ferential equation 

with conditions 

dvx = --~ 
dr 2'1(r) dx 

Vx = 0 for r = R, 21t f:vk) r dr = 1tR
2
U ; 

(5) 

(6), (7) 

I](r) is the viscosity coefficient corresponding to temperatures in the given section 
x = constant. Formally, the solution is found as 

vx(r, x) = 

UR 2 f~rl(2'1(r)) dr 

fJ~ r/lJ(r) dr~ d~ 
(8) 
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and 

~ 
dx 

(9) 

Heat Transfer in the Thermal Entry Region 

In a previous part! of this series we have assumed that the radial temperature profile 
may be approximated in the range 0 < Z ~ Ze (thermal entry region) for a given 
Z = Z 1 by two functions: for 0 ~ y ~ Yo(Z 1) it is the first eigenfunction of system 
(10)-(12) 

d2 t. 1 dt· 2 ) -' ------l+f3;w(y t;=O, 
dy2 1 - y dy 

t; = 0 for y = ° , 
t; = 1 and dt;/dy = 0 for y = YO(Z1) ; 

for Y > YO(Zl) it is t = 1. 

(10), (11) 

(12) 

(13) 

The assumption of approximability of the temperature profile by the first eigen
function is acceptable also here, because the shape of the temperature profile in the 
case of nonisoviscous flow is determined by the velocity profile, too; the greatest 
influence is, however, due to the velocity profile in an immediately preceding part 
of the exchanger. (The validity of this statement may be verified by expressing the 
temperature profile as a result of heat transfer in a series of elementary exchangers 
with the help of the superposition principle of fundamental solutions2

). 

The division of the temperature profile into two parts facilitates considerably the 
parallel solution of equations of heat and momentum transfer. The first eigenfunction 
of the given Sturm-Liuouville problem (10)-(12) in the form t 1(y/yo) has similar 
shapes even at considerable different courses of the temperature profile w(y). (This is 
restricted by the conditions that the function is non-descending on the interval ° ~ Y/Yo ~ 1 and that it reaches values from zero to unity; its derivative is equal 
to zero at y/Yo = 1). Therefore it is possible to choose the following iterative scheme; 
to estimate the temperature profile in the boundary layer for · a given Yo (e.g. as 
t = 3/2y/yo - HY/YO)3) and hence to calculate the corresponding velocity profile. 
We obtain a corrected value for the temperature for this velocity profile as a first 
eigenfunction of system (10) - (12) and the whole procedure is repeated until agree
ment between two successive results becomes satisfactory. 

Then , if we know temperature profiles in the boundary layer for so many values 
of Yo that the whole course of the dependences of the mean mixing temperature t M 

and the temperature gradient at the wall ot/oyly=o on Yo may be determined by an 
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interpolation, we can find the coordinate z corresponding to the value of Yo with the 
help of heat balance 

diM _')~I 
dz ~ 8y iy=o 

(14) 

After inserting 8 = (1 - t M)3/2, relation (14) goes over to the formula 

f
s(tM) 1 1 

z t -l ----- d8 
( M) - 3 0 ~I 81/3 

8y y=0,9 

(15) 

which is especially convenient for graphical integration due to the low variability of the 
integrand with respect to the variable of integration. 

Solution in the Region of a Developed Temperature Profile 

Similarly as in the thermal entry region (at z < Ze, where Yo < 1), we can assume 
at high values of z > Ze that the radial temperature profile is affected predominantly 
by the local velocity profile and that temperature profiles are similar for the same 
velocity profile. Hence it follows that at z > Zo and the dimensionless temperature 
in the pipe axis simultaneously equal to t(1), the velocity profile is the same as for 
l/J + = l/Jt(l), Yo = 1, z = Ze(l/J +) and the temperature profile is equal to t(y) = 

= l/Jl/JJ. tt(y), where tt is the first eigenfunction at l/J = l/J+ and Yo = 1. 
Numerical results for non-Newtonian flow through a pipe may be linearized 

to yield the relations 

Ze = 0'117, t~ = 0·536-0·036l/J, f(x) = -0·238-0·032x. (16)-(18) 

The symbol t~ stands for the value of tM at z = Ze and the derivative (dz/dt M) is taken 
at the same conditions. The function f(x) relates the argument x = t~ . 1/1+ to the 
functional value equal to the product (dz/dtMt. tM and, consequently, the same 
relation holds (in agreement with the above mentioned similarities of the profiles 
and with relation (14)) between the argument t M . l/J and the functional value (dz/dt M)' 
. t M . If we use approximate formulas (16)-(18), we obtain by integration 

z - 0·117-0·238 In tM + 0'032l/J[t M - 0·536 + 0'036l/J] = O . (19) 
0'536-0'036l/J 

With respect to several approximations made during the calculation of formulas 
, (16) - (18), it is suitable to adjust the numerical constants so that at l/J = 0 and z ~ 00 
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relation (19) may pass to the exact solution3 
tM = tMl exp (-biz) and Ze = In cdbi 

in agreement with the paperl; then it holds 

(20) 

100r-----.--.------r--r-----.--.-~ 

Nu 

7(-3 

0-1 1-0 

FIG. 1 

Mean Nusselt Number Nu for Newtonian Nonisoviscous Flow through a Pipe Exchanger with 
a Constant Temperature of Its WaH in Dependence on the Dimensionless Length of the Exchanger 
z and on the Nonisoviscousness Criterion Iff 
-- Solution by the method of the boundary layer, - ---- course in the limit of z-> 0, 

-'-'-' course in the limit of z-+ CfJ. 

10.-----.--.------.--.-----.--. 

FIG. 2 

3 
2 

-2 

-3 

0-1 

Dependence of the Dimensionless Local Pressure Gradient b = (dp!dx) R!8U1Jw on the Dimen 
sionless Distance from the Beginning of the Pipe Exchanger z and on the Nonisoviscousness 
Criterion Iff 

Solution by the method of the boundary layer. 
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where the parameters bi, t Ml, C 1 follow from the solution for isoviscous heat trans
fer 9 and a1 = 0'067, a2 = 0·032 for non-Newtonian nonisoviscous flow through 
the pipe. 

Generaliz ed Correlations for Heat Transfer 

Results for the heat transfer into a Newtonian liquid with temperature-dependent 
viscosity (1) may be e.g. formulated as the dependence of the mean Nusselt number 
based on the total heat transfer and on the arithmetic-mean difference in temperatures 

N u = 2( 1 + x) 1 - t M 

Z 1 + tM 
(21) 

on z (Fig. 1) and as the dependence of local values of the dimensionless loss in pres
sure b on z (Fig. 2). 

These dependences were compared with results obtained by the method of finite 
differences by other authors4

-
6

. Quantitative agreement with the results from the 
numerical solution was observed; discernible deviations may be found only at lower 
values of z, i.e. where the thickness of the boundary layer is comparable or even 
smaller than a step in the radial division of the grid of the computational procedure 
and, consequently, where the method of finite differences fails , whereas the solution 
of the boundary layer remains reliable. 

Thus, agreement with the numerical solution justifies the approximate mathematical 
procedure based on the variational method for finding the first eigenfunction in the 
form of an odd polynomial of the fifth degree and the approximation of the viscosity 

~:~ .... 10 ', 
- , 

., 

FIG. 3 

Dependence of the Mean Nusselt Number Nu for Newtonian Nonisoviscous Flow through a Flat 
Duct with One Wall Kept at a Constant Temperature and the Other Insulated, on the Dimen
sionless Length of the Exchanger z and on the Nonisoviscousness Criterion IfI 

- - Solution by the method of the boundary layer, .---- course in the limit of z -+ 0, 
-'-'- ' course in the limit of z -+ 00 . 
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profile by a polynomial, which has reduced the whole problem to repeated solution 
of a quadratic equation. This approximation does not guarantee the convergence 
only if a pronounced inflection is present on the velocity profile (at 1/1 < - 3). 

A scheme similar to that described in this work may be applied to other geometric arrange
ments. There are no fundamental differences in the whole computational procedure for a flact 
duct with a temperature step on one wall and with the other one insulated (except for the necessity 
of finding the coordinate of the maximum velocity). Analogous results have been obtained? for 
this case; e.g. relation (20) with values of al = 0'034, a2 = 0·039 and the dependence of the Nus
seIt number on zas depicted on Fig. 3. 

Practically it is most usual to correlate results of nonisoviscous heat transfer 
by comparing the actual arithmetic-mean Nusselt numbers (index noniso) with those 
calculated for the case of temperature-independent viscosity (index iso) by the rela
tion 

(22) 

The value of IX is often set equal to 0·14 as determined by Sieder and TateS during 
experiments with both laminar and turbulent heat transfer in a pipe. Quite generally, 
IX is a function of both z and 1/1, and, for non-Newtonian liquids, of their rheologic 
behaviour. The value of IX has turned out to be practically independent of 1/1 in the 
usually sufficient range - 3 ;;:; 1/1 ;;:; 3 and only slightly variable with the dimensionless 
length of the exchanger z (Table I) . It follows from Christiansen's results9 that the 
dependence of IX on the rheologic behaviour is insignificant as well and that in formula 
(22) it is possible to employ the same IX as for Newtonian liquids. 

TABLE I 

Mean Values of Exponent 0( for a Newtonian Liquid, -3 ;;:;; IfI ;;:;; 3 

0( pipe 

0( flat duct with asymmetric heat transfer 

o 
0·25 

0·001 

0·19 

0·20 

0·01 

0·17 

0·16 

0·1 

0·16 

0·14 

0·144 

0·144 

The use of classical correlation (22) for engineering calculations of heat transfer 
during nonisoviscous laminar flow in a pipe and in an asymmetrically heated flat 
duct is justified by the calculated results; for the exponent, it is however necessary 
to take somewhat higher value than the usually employed IX = 0·14. 
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LIST OF SYMBOLS 

A material parameter; see (1) and (3) (deg;-l) 

aI' a 2 
b 

bi 
C1 
Cp 

k 

dp!dx 

x 
X 

y 

Yo 

Z e 
Zl 

Nu 

NUiso 

NUnoniso 

Pe 
ex 
pi 

constants in relation (20) 
= (dp/dx) R2 / (8U1JW) dimensionless local pressure gradient 
first eigenvalue of the equatjon for isoviscous heat transfer lO 

first coefficient of the solution for the isoviscous temperature profile lO 

specific heat (cal g-1 deg- 1) 

thermal conductivity (calcm- 1 s-l deg- 1) 

local pressure gradient (g cm - 2 S - 2) 

radial coordinate (cm) 
radius of the pipe (width of the flat duct) (cm) 
temperature (DC) 
temperature of the liquid entering the exchanger COC) 
temperature of the exchanger wall CC) 
mean mixing temperature of the liquid flowing through the given section (DC) 
= (T - T w)!(To - T w) dimensionless temperature 
first eigenfunction of system (10)-(12) 
dimensionless mean mixing temperature 
coefficient of the solution for isoviscous heat transfer1 

mean velocity of the liquid (cm S-1) 
axial velocity (cm s - 1) 

= vxl U, dimensionless velocity 
distance from the beginning of the exchanger (cm) 
length of the exchanger (cm) 
= (l - r) / R , dimensionless distance from the wall 
dimensionless width of the thermal boundary layer 
= 2x/ (R Pe), dimensionless axial coordinate 
dimensionless length of the thermal entry region 
chosen value for z < Ze 
Nusselt number based on the arithmetic-mean temperature difference (21) 
value of Nu for isoviscous heat transfer 
actual value of Nu 
= 2RUQcp/ k, Peelet number 
exponent of Sieder-Tate correction (22) 
eigenvalue of system (10)-(12) 
viscosity (g cm -1 s -1) 

viscosity at temperature TM (gcm- 1 s-l) 
viscosity at temperature T w (g cm -1 s -1) 

material parameter (1) (g cm -1 s -1) 

transformed variable (14) 
geometric simplex equal to zero for a pipe and unity for a flat duct 
specific weight (g cm - 3) 

tangential stress (g cm -1 s - 2) 

criterion of nonisoviscousness of the flow 
=1fI . t(J) 
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